MATHS CLASS XII (Relations and Functions) Continuation.....

General direction for the students:-Whatever be the notes provided, everything must be copied in the Maths Copy and then do the Home work in the same Copy.

BINARY OPERATIONS (*)

A binary operator * on a non empty set A is a function *: $AXA \rightarrow A$.

Types of operation

Let * be a binary operations on a set A , then

- i) the operation is called Commutative(or Abelian) iff a*b=b*a for all a, b ϵ A.
- ii) the operation is called Associative iff (a*b)*c = a*(b*c), $\forall a,b,c \in A$
- iii) an element $e \in A$ is called identity element of the operation iff e * a = a = a * e, $\forall a \in A$
- iv) if $e \in A$ is identity element and $a \in A$ is invertible iff there exists $b \in A$ such that a * b = e = b * a. Element b is called inverse of a.

NOTE

- 1. Identity element is unique, if it exists.
- 2. Inverse element is unique, if it exists.
- 3. If n(A) = n, then the number of binary operations on A is n^{n^2} .

***** For further explanation of above points watch the video.

$$1 \text{ v)} . \textit{ Given } a * b = a - b + ab$$

Now
$$b * a = b - a + ba$$

$$\Rightarrow a * b \neq b * a$$

 \Rightarrow not commutative.

For Associative,
$$(a*b)*c = (a-b+ab)*c$$

$$= a-b+ab-c+(a-b+ab)c$$

$$= a-b+ab-c+ac-bc+abc$$

$$= a-b-c+ab+ac-bc+abc$$

$$a*(b*c) = a*(b-c+bc)$$

$$= a-(b-c+bc)+a(b-c+bc)$$

$$=a-b+c-bc+ab-ac+abc$$

$$\Rightarrow (a * b) * c \neq a * (b * c)$$

⇒ not Associative.

10. Given a * b = 2a + b - 3

$$3 * 4 = 2.3 + 4 - 3$$

=7

19. *given* a * b = a + b - 5

Let the identity element be e, then a*e=a=e*a

Now a*e=a+e-5=a

 \Rightarrow e=5 is the identity element.

23. Number of binary operations= 3^{3^2} = 3^9 =19683.

HOME WORK: Left over questions from the exercise.

CHAPTER IS COMPLETED